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Abstract

Traditionally, visualization is done via post-processing: a simulation produces data, writes
that data to disk, and then, later, a separate visualization program reads the data from disk
and operates on it. In situ processing refers to a different approach: the data is processed while
it is being produced by the simulation, allowing visualization to occur without involving disk
storage. As recent supercomputing trends have simulations producing data at a much faster rate
than I/O bandwidth, in situ processing will likely play a bigger and bigger role in visualizing
data sets on the world’s largest machines.

The push towards commonplace in situ processing has a benefit besides saving on I/O costs.
Already, scientists must limit how much data they store for later processing, potentially limiting
their discoveries and the value of their simulations. In situ processing, however, enables the
processing of this unexplored data.

Preface

The material in this technical report is a chapter from the book entitled High Performance
Visualization—Enabling Extreme Scale Scientific Insight [3], published by Taylor & Francis,
and part of the CRC Computational Science series.

4



Contents

1 Introduction 6

2 Tailored Co-Processing at High Concurrency 7

3 Co-Processing With General Visualization Tools Via Adaptors 9
3.1 Adaptor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 High Level Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 In Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Co-Processing Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Concurrent Processing 13
4.1 Service Oriented Architecture for Data Management in HPC . . . . . . . . . . . 14
4.2 The ADaptable I/O System, ADIOS . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Data Staging for In Situ Processing . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Exploratory Visualization with VisIt and Paraview Using ADIOS . . . . . . . . . 16

5 In Situ Analytics Using Hybrid Staging 16

6 Data Exploration and In Situ Processing 18
6.1 In Situ Visualization by Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 In Situ Data Triage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Conclusion 20

5



1 Introduction

The terms used for in situ processing have not been used consistently throughout the com-
munity. In situ processing refers to a spectrum of processing techniques. The commonality
between these techniques is that they enable visualization and analysis techniques without the
significant—and increasing expensive—cost of I/O. On one end of the in situ spectrum, re-
ferred to as co-processing, visualization routines are part of the simulation code, with direct
access to the simulation’s memory. On the other end of the in situ spectrum, referred to as
“concurrent processing,” the visualization program runs separately on distinct resources, with
data transferred from the simulation to the visualization program via the network. Hybrid
methods combine these approaches: data is processed and reduced using direct access to the
simulation’s memory (i.e., co-processing) and then sent to a dedicated visualization resource for
further processing (i.e., concurrent processing). Table 1 summarizes these methods.

Technique Co-processing Concurrent Hybrid
Processing

Tightly coupled Loosely coupled
Aliases Synchronous Asynchronous None

Staging

Vis runs on Data is reduced
Vis routines have dedicated, via co-

Description direct access concurrent processing
to memory of resources and and sent to

simulation code access data a concurrent
via network resource.

Memory
constraints. Data movement Complex. Also

Negative Large impact costs. Requires shares negatives
Aspects on simulation separate of other

(crashes, resources. approaches.
performance).

Table 1: Summary of in situ processing techniques

For approaches that process data via direct access to the simulation’s memory (i.e., co-
processing and hybrid approaches), another important consideration is whether to use custom,
tailored code, written for a specific simulation, or whether to leverage existing, richly featured
visualization software. Tailored code is most likely to be well-optimized for performance and
memory requirements, for example by using a simulation’s data structures without copying them
into another form. However, tailored code is often not portable or re-usable, making it tied to a
specific simulation code. Utilizing existing, richly featured visualization software is more likely
to work well with many simulations. But, typically, the price of this generality may be increased
due to the usage of resources, such as memory, network bandwidth, or CPU time.

There are three important in situ processing case study scenarios that will be discussed:

• a tailored, co-processing approach at high levels of concurrency, described in Section 2;

• a co-processing approach via an adaptor layer to a richly featured visualization tool, de-
scribed in Section 3; and

• a concurrent approach in the context of the ADIOS system, described in Section 4.

Hybrid processing is an emerging idea, with little published work; its concepts and recent results
are discussed in Section 5. Finally, Section 6 discusses how to use in situ processing when the
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visualizations and analyses to be performed are not known a priori.

2 Tailored Co-Processing at High Concurrency

Tailored co-processing is the most natural approach when implementing an in situ solution
from scratch and focusing on integration with just one simulation code. The techniques and
data structures are implemented with a specific target in mind, resulting in high efficiency in
performance and memory overhead, since the simulation’s data does not need to be copied. Not
surprisingly, many of the largest scale examples of in situ processing, to date, have been done
using tailored co-processing. Co-processing has been practiced by some researchers in the past
with the objective to either monitor or steer simulations [11,18,21,22]. Later results focused on
speeding up the simulation by reducing I/O costs [33,38].

Co-processing has many advantages:

• Accessing the data is very efficient, as the data is already in the primary memory. In con-
trast, post-processing accesses data via the file system and concurrent processing accesses
data via the network.

• Visualization routines can access more data than is typically possible. Simulation codes
limit the number of time slices they output for post-processing, since I/O is so expensive.
But, with co-processing, the visualization routines can be applied to every time slice, and
at a low cost. This prevents discoveries from being missed because the data could never
be explored.

• The integrity of the data does need to be compromised. Some simulations produce so
much data that the data must be reduced somehow, for example by subsampling; this is
not necessary when co-processing.

Co-processing also has some disadvantages:

• Any resources, such as memory or network bandwidth, consumed by visualization routines
will reduce what is available to the simulation. Further, existing visualization algorithms
are usually not optimized to use the domain decomposition and data structures designed
for the simulation code. To be used in situ, the algorithms may have to be reformu-
lated so as not to duplicate data and incur excessive interprocessor communication for the
visualization calculations.

• The visualization calculations should only take a small fraction of the overall simulation
time. If they take longer, the visualization routines can impact the ability of the simula-
tion to advance if they can not finish quickly enough. Although sophisticated visualization
methods offer visually compelling results, they are often not acceptable for in situ visual-
ization.

• If the visualization routines crash or corrupt memory, then the simulation will be affected—
possibly crashing itself.

• The visualization routines must run at the same level of concurrency (in terms of num-
bers of nodes) as the simulation itself, which may require rethinking some visualization
algorithm design and implementation.

In short, it is both challenging and beneficial to design scalable parallel in situ visualization
algorithms. The resulting visualization should be cost-effective and highlight the best features
of interest in the modeled phenomena without constantly acquiring global information about
the spatial and temporal domains of the data. A good design must take into account the domain
knowledge about the modeled phenomena and the simulation model. As such, a co-processing
visualization solution should be developed as a collective effort between the visualization special-
ists and simulation scientists. Other design considerations for co-processing in situ visualization
are discussed by Ma [19].

Finally, the recent results of Yu et al. [39] are briefly summarized here,to understand a real-
world, tailored co-processing approach. They achieved highly scalable in situ visualization of a
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Figure 1: Timing results for both simulation and visualization using different numbers of cores. In
this set of tests, the number of grid points on each core is fixed so using more cores provides higher
resolution calculations. Visualization is computed every ten timesteps, which is at least 20–30 times
more frequent than usual. As shown, the visualization cost looks negligible. The simulation time
increases as more cores are used due to the communication required to exchange data after each
iteration. The visualization time also grows as more cores are used because of the communication
required for image compositing, but it grows at a much slower rate than the simulation time.

turbulent combustion simulation [7] on a Cray XT5 supercomputer, using up to 15,260 cores.
Figure 1 shows a set of timing test results. This work was novel outside of its extreme scale,
because it introduced an integrated solution for visualizing both volume data and particle data,
allowing the scientists to examine complex particle-turbulence interaction, like the type shown
in Figure 2. The mixed types of data required considerable coordination for data occurring along
the boundaries [39] and highly streamlined routines, like the 2-3 swap compositing algorithm.
Finally, their efforts had benefits beyond performance. Before employing in situ visualization,
the combustion scientists subsampled the data to reduce both data movement and computational
requirements for post-processing visualization. This work allowed them to operate on the original
full-resolution data.

Figure 2: Visualization of the particles and CH2O field.
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3 Co-ProcessingWith General Visualization Tools Via Adap-
tors

As with tailored code, co-processing with a general visualization system incorporates visualiza-
tion and analysis routines into the simulation code, allowing direct access to the simulation’s data
and compute resources. Whereas co-processing with tailored code integrates tightly-coupled vi-
sualization routines adapted to the simulation’s own data structures, co-processing using general
routines from fully featured visualization systems uses an adaptor layer to access simulation data.
The adaptor layer is simply a set of routines that the simulation developer provides to expose
a simulation’s data structures in a manner that is compatible with the visualization system’s
code.

The complexity of adaptors can vary greatly. If the data structures of the simulation and the
visualization system differ, then the adaptor’s job is to copy and reorganize data. For example,
a simulation may contain particle data, with spatial coordinates and other attributes for each
particle. If the simulation’s data is organized as an array of structures, and the visualization
system requires a structure of arrays, the simulation data must be reorganized to match that
of the visualization code, thus consuming more resources. Conversely, adaptors for codes with
very similar data structures may share pointers to the simulation’s arrays with the visualization
code, a “zero-copy” scenario.

Figure 3: Diagram of the adaptor that connects fully featured visualization systems with arbitrary
simulation codes.

Tailored code and general co-processing share many of the same strengths and weaknesses.
Both approaches operate in the same address space as the simulation, potentially operating on
data directly without conversion. Both approaches cause some extra code to be included in the
simulation executable and both may generate additional data, subtracting from the memory
available to the simulation. This last property poses problems on many supercomputers, as the
trend is to have less and less memory available per core. Memory considerations are exacerbated
for co-processing approaches since adaptors may copy data and general visualization tools might
have higher memory usage requirements than tailored solutions. The two approaches may also
differ in their performance. Tailored code is optimized for the simulation data structures, and
so it may not match an optimal layout for already-written general visualization algorithms. But
it may be possible with tailored code to optimize these algorithms for the simulation’s native
data layout.

On the other hand, co-processing with general visualization tools can often be easily enabled
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within a simulation through the addition of a few function calls and by adding an adaptor
layer. An adaptor code is far less complex to create than the visualization routines themselves,
often consisting of only tens of lines of source code. Consequently, adaptor code is cheaper to
develop than tailored code and benefits from the use of existing well-exercised routines from
fully featured visualization systems. Furthermore, once the data are exposed via the adaptor,
they can be visualized in many ways using the general visualization system as opposed to a
tailored approach, which might provide highly optimized routines for creating limited types of
visualizations.

3.1 Adaptor Design

A successful adaptor layer connecting computational simulations to general purpose visualization
tools will have several features inherent in its design:

• Maximize features and capabilities. There are numerous use cases for visualization and
analysis, particularly in situ. Focusing an in situ implementation on a specific feature
set, for example making movies, will mean that important other use cases will be missing,
like interactive debugging. By adapting a general purpose, fully-featured visualization
and analysis tool, the in situ co-processing tasks gain the capability to use many of these
features, as long as the adaptor layer exposes the simulation data properly to the tool.

• Minimize code modifications to simulations. The less effort it takes to apply the adaptor
to a new simulation, the more easily an in situ library can be adopted by a wide range
of codes in the HPC community. General purpose tools are already capable of supporting
the data model for a wide range of simulation applications, so the barrier for translating
data structures should be minimal.

• Minimize impact to simulation codes when in use. Ideally, codes should be able to run
the same simulation with or without in situ analysis. For example, the limited memory
situation in distributed systems is exacerbated by co-processing via shared computational
nodes, and zero-copy and similar features mitigate the negative impact.

• Zero impact to simulation codes when not active. Simulation codes should be able to
build a single executable, with in situ support built-in, and suffer no detrimental side
effects, such as reduced performance or additional dependencies on libraries. Without this
feature, users must decide before running a simulation code—or worse, before compiling
it—whether or not they wish to pay a penalty for the possible use of in situ capabilities,
and may choose to forgo the option. Allowing users to start an in situ session on demand
enables many visualization and analysis tasks, like code debugging, that the user could
not have predicted beforehand.

3.2 High Level Implementation Issues

Co-processing is implemented successfully in the general visualization applications ParaView [10]
and VisIt [36], two codes built on top of the Visualization Toolkit (VTK) [24]. The codes are
similar in many ways beyond their mutual reliance on VTK, including their use of data flow
networks to process data. Data flow networks are composed of various interchangeable filters
through which data flows from one end to the other with transformations occurring in the filters.
In an in situ context, the output of the last filter in the data flow network is the product of the
in situ operation. It may be a reduced data set, statistical results, or a rendered image. For in
situ use, both applications use adaptor layers to expose simulation data to their visualization
routines by ultimately creating VTK data sets that are facades to the real simulation data.
ParaView’s adaptor layer must be written in C++ and it directly creates VTK objects that will
be passed into its data flow networks. VisIt adaptor layers may be written in C, Fortran, and
Python and also create VTK data sets that can pass through VisIt’s data flow networks.

The co-processing strategies used by ParaView and VisIt are somewhat different where the
simulation interacts with the co-processing library. ParaView’s co-processing library consists
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of a few top-level routines inserted into the simulation’s main loop. The simulation data are
transformed by the adaptor layer and passed into a co-processing routine, which constructs a
data flow network based on an XML specification from ParaView. The results of the pipeline
may be written to a disk or staged over the network to concurrent resources, where ParaView
may be used for further analysis. VisIt’s interaction with the simulation emphasizes a more
exploratory style of interaction where, rather than executing fixed data flow networks, the
VisIt client dynamically connects to the simulation and directs it to create any number of data
flow networks. The end user can be involved with this process and decide which analyses to
perform on-the-fly. Since VisIt is able to send plotting commands to the simulation, it integrates
differently into the simulation’s main loop than ParaView and its adaptor layer is executed only
when necessary.

3.3 In Practice

This section explores Libsim, the in situ library in VisIt, in more detail. Libsim wraps all of
VisIt’s functionality in an interface that is accessible to simulations. In effect, it transforms
the simulation into the server in its client-server design. Libsim has features consistent with
the four design goals listed in Section 3.1: it connects to VisIt, a fully-featured visualization
and analysis tool and can expose almost any type of data VisIt understands; it requires only a
handful of lines of code to instrument a simulation; it minimizes data copies wherever possible;
and it defers loading any heavyweight dependencies until in situ analysis tasks begin.

There are two interfaces in Libsim: a control interface that drives the VisIt server, and a data
interface that hands data to the VisIt server upon request. The control interface is contained
in a small, lightweight static library that is linked with the simulation code during compilation,
and is literally a front-end to a second, heavier-weight runtime library that is pulled in only
when in situ analysis begins at runtime. The separation of Libsim into two pieces prevents
inflation of executable size, even after linking with Libsim, while still retaining the ability to
access the full VisIt feature set when it is needed.

The control interface is capable of advertising itself to authorized VisIt clients, listening for
incoming connections, initiating the connection back to the VisIt client, handling VisIt requests
like plot creation and data queries, and letting the client know when the simulation has advanced
and that new data is available.

Several aspects of Libsim result in benefits for both interacting and interfacing with simula-
tions. The separation between the front-end library and the runtime library is one such aspect.
In particular, modifications to simulation codes to support Libsim can be minimal, as the front-
end library contains only approximately twenty simple control functions (most of which take
no arguments), and only as many data functions as the simulation code wishes to expose. This
separation also enables the front-end library to be written in pure C. As such, despite VisIt
being written in C++, no C++ dependencies are introduced into the simulation by linking to
the front-end library, which is critical since many simulations are written in C and Fortran.
Additionally, by providing a C interface, the process of automatically generating bindings to
other programming languages, like Python, is greatly simplified. The separation into front-end
and runtime library components also means that the runtime library implementation is free to
change as VisIt is upgraded, letting the simulation benefit from these changes automatically,
without relinking to create a new executable. In addition, by deferring the heavyweight library
loading to runtime, there is effectively zero overhead and performance impact on a simulation
code linked with Libsim when the library is not in use.

Another beneficial aspect is the manner in which data are retrieved from the simulations.
First, as soon as an in situ connection is established, the simulation is queried for metadata
containing a list of meshes and fields that the simulation wishes to expose for analysis. The
metadata comes from a function in the adaptor layer. Just as in a normal VisIt operation,
this list is transmitted to the client, where users can generate plots and queries. Once the user
creates a plot and VisIt starts executing the plot’s data flow network, the other functions in the
simulation’s data adaptor layer are invoked to retrieve only the data needed for the calculation.
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VisIt’s use of contracts ensures that the minimal set of variables will be exposed by the adaptor
layer, reducing any unnecessary data copying from converting variables that are not involved in a
calculation. Whenever possible, simulation array duplication is avoided by including simulation
arrays directly into the VTK objects, minimizing the impact on the performance and scaling
capabilities of simulation codes.

3.4 Co-Processing Performance

An experiment performed by Whitlock, Favre, and Meredith [36] demonstrated that the adaptor
approach performs and scales well. Their experiments were conducted on a 216 node visual-
ization cluster with two, six-core 2.8GHz Intel Xeon 5660 processors and 96GB of memory per
node. The test system utilizes an InfiniBand QDR high-speed interconnect and a Lustre parallel
file system. They ran two types of tests to characterize the performance of this library. The first
test determined the cost associated with introducing Libsim into the main loop of a prototype
simulation. The second test investigated the performance of in situ visualization versus I/O in
a real simulation code.

Libsim introduces additional overhead in the simulation’s main loop: it listens for incoming
connections and broadcasts in situ analysis requests to distributed tasks. Whitlock et al. wanted
to measure the associated time overhead when VisIt was not connected to the simulation, so
they added timing code to Libsim’s updateplots example program. They then ran the example
program through 10K main loop iterations. The time spent was small: 2µs and 8µs, respectively,
for 512 core runs. The measurements remain consistent once VisIt connects and is not requesting
data. Connecting to VisIt does increase the amount of memory used by the simulation as
this connection requires loading the VisIt runtime libraries, which imposes a one-time cost of
approximately one second.

A study by Childs et al. demonstrated that I/O dominates VisIt’s execution time on diverse
supercomputer architectures and that VisIt’s isocontouring performance at 8K up to 64K cores
was, on average, over an order of magnitude faster than the I/O operations needed to obtain
the data from disk. In situ visualization uses simulation arrays directly, of course, and usually
allows VisIt’s pipeline to execute in a fraction of the time required for I/O. Although tests
using thousands of cores would better represent large supercomputers, in situ’s performance
advantage over I/O even became apparent at modest core counts.

The study by Whitlock et al. [36] was designed to measure the impacts and benefits of in
situ processing via general visualization tools and adaptors. They instrumented GADGET-
2 [27], a distributed-memory parallel code for cosmological simulations of structure formation
(see Figure 4). They ran GADGET-2 at three levels of concurrency: 32, 256, and 512 cores
to measure in situ performance versus I/O performance. They isolated the time required for
GADGET-2 to write its data to disk in two modes: one using collective I/O to a single file, and
again in a mode where each task writes its own disk file. They separately recorded the timings
of just the visualization/analysis processing in the VisIt pipeline, rendering a Pseudocolor plot
of a scalar variable and saving a 2048 square pixel image to disk. They ran each of these tests
using two sets of initial conditions for GADGET-2, generating particle sets with 16M and 100M
particles.

In the larger test case where 100M particles were saved, GADGET-2 would generate a 2.8GB
snapshot file. Since the amount of data was constant for each test run, they found that the
timings for collective I/O are relatively consistent. Independent files are the fastest means for
writing files with smaller core counts, though performance in this mode is inversely proportional
to the core count, as the I/O subsystem can absorb only a limited number of simultaneous
requests before its performance starts to degrade. By substituting a visualization operation, in
this case a Pseudocolor plot, for writing a full 2.8GB GADGET-2 snapshot file, they were able
to reduce the amount of data written to a single 12MB image file. From this performance data,
they observed that, for the selected visualization operation, in situ processing is competitive with
single-file I/O and exceeds collective I/O performance. For smaller core counts with large sets of
particles, the work performed per core is higher, resulting in a longer runtime vs. single-file I/O.
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16 Million Particles

32 cores 256 cores

I/O 1 file 2.76s 4.72s

I/O N files 0.74s 0.31s

VisIt pipeline 0.77s 0.34s

100 Million Particles

32 cores 256 cores 512 cores

I/O 1 file 24.45s 26.7s 25.27s

I/O N files 0.69s 1.43s 2.29s

VisIt pipeline 1.70s 0.46s 0.64s

Table 2: Performance of visualization/analysis vs. I/O for 16M and 100M particles at different
levels of concurrency.

Figure 4: VisIt client connected to GADGET-2 instrumented with Libsim. Image source: Whitlock
et. al [36].

However, as the number of cores increases, the runtime of the visualization processing alone is
far lower than that of either single-file I/O or collective I/O. The margin of performance is large
enough that they could have generated several in situ visualizations in the time needed to write
a full size snapshot file. This example demonstrates that in situ analysis can be an attractive use
of extra compute cycles in upcoming exascale computers and a powerful acceleration technique
for large scale computations.

4 Concurrent Processing

The concurrent in situ approach allows simulation and visualization software to run with min-
imal interaction, similar in spirit to non-in situ usage. The approach resembles a file-based
approach, but uses the network for transferring data instead of storage. By keeping the simu-
lation and visualization programs on separate resources, potential errors during processing do
not affect the simulation itself. It also allows for scaling the simulation and the visualization
code separately. Compared to co-processing, however, there is an extra cost: all data for visu-
alization and analysis has to be transferred to separate processing nodes through the internal
network. Fortunately, these costs can be partially ameliorated via smart data filtering [1] and/or
compression [16].
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In this section, a service-oriented approach to data processing, analysis and visualization is
presented, in the context of the ADIOS I/O framework. The framework provides a single I/O
API for the simulation to output data (as if writing to files), and the visualization tool to read
input data (as if reading from files). It also provides services to transfer data from the output to
the reader(s) and a plug-in-based architecture to allow new data processing routines for analysis
or visualization steps. ADIOS can organize these steps into a workflow, including a scheduling
that takes into account available resources.

4.1 Service Oriented Architecture for Data Management in HPC

The Service Oriented Architecture (SOA) is a methodology for designing software to create
interoperable services. It was defined by Thomas Erl of SOA Systems [9]. Some of its require-
ments must be loosened, however, for performance or complexity reasons when considering data
intensive HPC. Specifically, services need not be stateless or opaque to other services. Further-
more, costly service ideas are avoided, such as ontology-based service contracts, per-invocation
based service selection, and utilization of an explicit service bus. The following SOA principles
have been and are being followed when designing ADIOS for I/O and in situ data processing.

• Abstract and reusable services. The backbone of a flexible system is its ability to deal with
multiple types of input data. For example, a compression service that simply treats data
as a bucket of bits, instead of a semantically knowable data structure, will not be sufficient
for the needs of extreme scale data management. A self-describing data format, including
metadata for introspection, allows services to leverage semantic knowledge about the data
to be processed.

• Service contracts. The SOA approach requires services to define an interface, or a contract,
that defines how the service interacts with external entities. Given the vast range of do-
mains and semantics that need to be supported for an HPC framework, a well understood
read/write/query API forms the foundation of the ADIOS infrastructure. Computational
scientists are already intimately familiar with the standard data input and output oper-
ations. Actions such as opening a file and writing a group of variables are very useful
abstractions in providing a familiar yet dynamic and flexible interface to the scientists. In
order to address the requirements of data format descriptions there is, however, one addi-
tional requirement for the user: the creation of metadata from which the service framework
can obtain reasonable semantic information about the data structure.

• Service location transparency. While service location transparency is not part of the basic
SOA definition, it is an important aspect of attaining the highest level of performance for
data intensive computing. In particular, it is paramount that services can be flexibly placed
within the data processing pipeline, to maximize the exploitation of available resources.

4.2 The ADaptable I/O System, ADIOS

ADIOS [17] has been developed with the goal of addressing the needs of users of leadership
computing facilities (such as those at Oak Ridge and Argonne National Laboratories), as well as
users of other large supercomputers. Many past efforts in providing advanced data management
infrastructures have burdened scientists with complex APIs and forced them to make extensive
changes to their applications. And, while providing adequate functionality, they do not usually
perform acceptably at high concurrency. ADIOS has been designed and developed with constant
interaction from developers of large-scale simulations from many domains, such as computer
science, nuclear physics, combustion, and astrophysics. The primary focus of research has been
performance for typical I/O scenarios while maintaining a simple API for a self-describing data
format. The result is a framework that provides several methods for performing I/O, allowing
users to choose the one best for their needs.

The interface to ADIOS is a simple read/write API. An application can describe the content
and organization of an output file in an XML file, which can be created manually by applica-
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tion developers. The XML file contains variables with name, type and dimensionality, and also
assigned attributes. Alternatively, the program itself can declare the variables by invoking a
function. The I/O part of the program code can be generated from the XML automatically,
if all of the routines for writing data are in a single location. This is not required, however,
as traditional open, write, and close functions can also be used to create the output file. Ad-
ditionally, the method for writing a group of variables can be chosen in the XML file. This
means that if the currently used method is not performing well anymore, then porting the I/O
part of the application to a new computer architecture or new I/O system requires only a small
change in the XML file. For example, an I/O strategy where all processes write into a single file
using MPI-IO, can be replaced with an aggregating strategy, where a small number of processes
gather all data and write efficiently into separate files on a parallel file-system. Further, the
XML definition of the content allows for an easy way to describe semantic information according
to an application domain’s predefined storage schema or domain knowledge. Moreover, it allows
users to prescribe actions for visualization too, including which tools to use and operations to
perform.

The buffering provided by ADIOS works with all of its I/O methods that output in the
ADIOS-BP file format, which was designed for efficient utilization of parallel file systems. Buffer-
ing allows for using bulk data transfers, which is usually orders of magnitudes faster than writing
small chunks of data. The BP format is the fastest format used in ADIOS, in most writing and
reading scenarios. It is a self-describing format, where the file content can be discovered and
queried from the information stored in the file itself. The format avoids the bottlenecks of reor-
ganizing data from application memory to the file, which are common with other file formats,
and also minimizes the contention of file access patterns from many processors to the limited
number of file servers.

4.3 Data Staging for In Situ Processing

I/O bandwidth, relative to the processing power of current supercomputers, is often insufficient
and this trend is predicted to only get worse. Already, storing data to files is often a significant
bottleneck during simulation, even with the best I/O solutions. In response, ADIOS developers
turned their research focus to in situ processing for as many data management tasks as possible
before writing data to permanent storage. ADIOS had many advantages in transitioning their
product for the in situ space, including the separation of API from the choice of I/O methods,
the buffering-as-service provided to all methods, and the simplicity and completeness of the API
to describe data sets.

There are many benefits to using a set of nodes as a staging area, where I/O can be placed
before moving it to disk. First, data can be asynchronously and efficiently moved to staging
nodes using Remote Data Memory Access (RDMA), as with DataStager [2]. Second, multiple,
parallel applications can simultaneously read a multidimensional array, with arbitrary decom-
position, as with DataSpaces [8]. And, third, services can apply data processing actions to data
in the staging area and as it is being moved from the (parallel) writer to the (parallel) reader,
as with PreDatA [41]. In short, combining data processing actions with I/O in a staging area
has been shown to be flexible and efficient. Further, the approach minimizes power and I/O
issues and is an active focal point for exascale research. Finally, the user experience is simplified:
applications do not need to manage how and where each piece of data is stored, as each process
observes and accesses all data sets by defining the geometries of the subsets it wants to write or
read.

Virtual data spaces can be used for code coupling. In one example, they facilitated mul-
tiphysics simulations by combining different plasma fusion models. Although the models were
written for exchanging data via the file system, virtual data spaces allowed them to move data
asynchronously from memory to memory. The file-based coupling was changed to a faster
memory-to-memory coupling by changing the name of the used method in their respective
ADIOS configuration XML files. This service-oriented approach to data movement let the ap-
plication developer teams keep the code of their physics models separate, avoiding the software
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development and maintenance issues of a combined code.
The abstractions of data access and transfer, which are performed asynchronously between

tasks, enable task pipelining. This means the data can be processed without worrying about
the placement of a task and how it will get the data it needs. However, effective description
of the data is essential: a self-describing data format and API for reading and writing data
are necessary for a task to understand the data it receives. For example, there is a need for
semantically meaningful data chunks or portions, such as the data representing entire variables
in simulation codes, and there also must be descriptions about those chunks available when
processing actions are carried out. The abstractions of data access and transfer, and the effective
data description enable a generic plug-in architecture, where both common and domain-specific
analysis and visualization tasks can be created as self-contained codes with a well-defined input
and output that behave as services and can be publicly released and reused by many applications.

4.4 Exploratory Visualization with VisIt and Paraview Using ADIOS

In this section, a design similar to a client-server design where the server is parallelized and data
is read (in parallel) from files is considered, but the data is read from the network, not files.
Once a simulation code opts to use the ADIOS API, ADIOS’s plug-in architecture allows it to
dynamically switch from a file-based I/O to a mode where data is sent directly to a staging server
for processing, enabling exploratory visualization using concurrent in situ. VisIt and ParaView
both have readers for this ADIOS read API, and support both file-based and in situ-based
ADIOS usage. From the perspective of these tools, there is virtually no difference in obtaining
data from the network instead of the disk. The only change needed was to handle timesteps
coming separately from the simulation, instead of having access to all timesteps in a file.

An example of concurrent visualization is described here, namely, how output from the
Pixie3D plasma fusion code [6] is visualized (see Fig. 5). This code’s output is not directly used
for visualization because its internal geometries are not useful when visualized. A separate code,
Pixplot, is used to read in the output and, on a much smaller number of processes, transforms
and writes the data and meshes in Cartesian coordinates. In the past, this post-processing
step generated files, which the user of Pixie3D would study with VisIt in a post-processing
fashion. The three components—the Pixie3D simulation, the Pixplot transformation and the
VisIt visualization tool—represent a typical scenario for concurrent in situ visualization. Since
each of these codes used ADIOS for writing and reading data for post-processing exploration,
it was straightforward to modify them for concurrent visualization. Pixie3D required no change
at all. Pixplot required its processing loop to change from opening one file and iterating over
all timesteps to loop for an unknown amount of iterations while there is data coming from the
simulation, and read a timestep from the staging area, including possibly waiting if the next
timestep is not yet available. The same was true for VisIt’s ADIOS reader, which had to be
modified to deal with only a single timestep at a time.

Additionally, there is a sequential tailored code for Pixie3D data, Pixmon, which generates
2D slices from the 3D output of Pixie3D itself. These small images are stored on a disk, which
is accessible by the ESiMon dashboard [30], so the user of the code can monitor the status of the
simulation through a set of 2D snapshots, in close to real-time. For this reason, they used the
DataSpaces staging service, which runs separately and can serve two readers of Pixie3D data:
Pixplot and Pixmon. Pixplot’s output is also stored in the distributed, shared space provided by
this same staging server. Several timesteps are stored, so that VisIt or, more precisely, the user
driving the VisIt client can explore a timestep long after it was generated by the simulation.

5 In Situ Analytics Using Hybrid Staging

To achieve better performance and efficiency, high performance computing (HPC) systems are
increasingly based on node architectures with large core counts and deep memory hierarchies.
For example, Oak Ridge’s Titan system uses 16-core AMD Opteron nodes, and the forthcoming
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Figure 5: This example has four separate programs—the Pixie3D simulation, Pixplot, Pixmon, and
VisIt—strung together as a workflow on the same supercomputer. A fifth program, the staging
server (ADIOS), serves the read and write requests of these programs through its API.

petascale supercomputers like Mira at Argonne and Sequoia at Lawrence Livermore will both
employ the IBM BlueGene/Q 18-core nodes to exploit more on-chip parallelism. This archi-
tectural trend increases the performance gap between on-chip data sharing and off-chip data
transfers. As a result, moving large volumes of data using the communication network fabric
can significantly impact performance. Further, minimizing the amount of inter-application data
exchanges across compute nodes and its consequent network use are critical to achieving high
application performance and system efficiency.

Consider a pipeline that consists of more than one task for processing simulation data, for
example, one that includes filtering, pre-processing, analytics, visualization, etc. Using an ex-
clusively concurrent in situ solution may result in too much network traffic, while a purely
co-processing setup may overtax the resources present on compute nodes. Furthermore, certain
analytics processing tasks are inherently difficult to scale, such as those requiring frequent col-
lective communications. But, to effectively utilize the potential of current and emerging HPC
systems, coupled data-intensive visualization pipelines must exploit compute node-level data lo-
cality and core-level parallelism to the greatest extent possible. Each task should be schedulable
for either co-processing or concurrent processing, as per each pipeline’s processing characteris-
tics. In other words, there must be flexibility in where each data processing action is performed,
including on compute nodes, on staging nodes, or both [20, 42]. Achieving such flexibility is
challenging, requiring locality-aware mapping of tasks from separate-yet-coupled applications
onto the same cores and efficient support for coordination and data exchange between these
coupled applications.

Hybrid in situ (illustrated in Figure 6) is a technique that combines dedicated cores for
co-processing to reduce data movement with dedicated nodes for concurrent data processing.
Its goal is to efficiently enable visualization and analysis of data by reducing data movement
by moving computation closer to the data. Successful deployment of such a hybrid in situ
framework can enable novel data processing scenarios, such as moving data customization and
filtering operations to where the simulation data is being produced—transforming data as it
moves from source to sink, supporting in situ coupling to increase intra-node data sharing, and
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dynamically deploying data processing plug-ins (binary and/or source code) for execution within
the staging area.

Figure 6: Illustration of hybrid data staging architecture for in situ co-processing and concurrent
processing.

There have been several research efforts in understanding the efficacy of hybrid in situ
processing. Early work on commodity networks established that source-based data filtering
and compression can substantially reduce the volumes of data being moved and the associated
movement overheads [5,37]. Later work [1,4] explored selective co-processing actions that move
only the data that is needed from compute to staging nodes. Zheng et al. [42] and Parashar [20]
then described the importance of such flexibility and the design of a stream processing system
that provided location-flexible operations.

The Co-Located DataSpaces (CoDS) framework [40] uses a workflow-like approach to maxi-
mize the on-chip exchange of data for coupled visualization applications by building on DataS-
paces [8] and ADIOS (see Section 4). The design of CoDS includes a distributed data sharing
and task execution runtime. It employs data-centric task placement to map computations from
the coupled application components onto cores so that a large portion of the data exchanges
can be performed using the on-node shared memory (see Fig. 7). It also provides a shared space
programming abstraction that supplements existing parallel programming models (e.g., message
passing) with specialized one-sided asynchronous data access operators, and can be used to ex-
press coordination and data exchanges between the coupled applications. The framework builds
a scalable, semantically specialized virtual, shared space that is distributed across cores on com-
pute nodes, and provides simple abstractions for coordination, interaction, and data-exchange.
The CoDS framework currently supports execution and data-centric task mapping for a work-
flow that is composed of data parallel application components with regular multidimensional
data meshes and domain decompositions.

6 Data Exploration and In Situ Processing

In situ visualization is most appropriate when end users know what they want to look for a
priori. In this case, visualization and analysis may be performed as soon as the data is generated
and the end user does not need to be involved. However, the case where the user does not know
what they want to look for a priori—that is, where they want to explore the data—is more
problematic, since the amount of time to explore the data is variable and may take hours or
days. These time scales make stalling the simulation or keeping a copy of the data in memory
unpalatable. Further, some types of exploration may require studying temporal data; keeping
multiple time slices in memory almost certainly will exceed memory constraints.

An alternate approach is to transform (and hopefully reduce) the data in situ and then
explore the data with traditional post-processing. Common approaches involve compression
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Figure 7: An example of locality-aware, data-centric mapping of two interacting applications onto
two multi-core nodes.

Number of cores 240 1920 6480

Simulation time (sec) 8.7204 9.3393 9.5573

I/O time (sec) 9.4563 26.051 52.565

Volume rendering time (sec) 0.3817 0.6155 0.7359

RAF computing time (sec) 1.2775 1.3938 1.3973

Table 3: Timing results for visualization by proxy on a Cray XT5. Each core is assigned a region
of 27 × 40 × 40 grid points. Image resolution used is 1024 × 1024. The number of layers used for
RAF is 16. The time for RAF is significantly less than the I/O time, demonstrating the advantage
of an in situ approach.

(either spatially or temporally), statistical sampling, data subsetting [12,13,23,28,29], or feature
identification and tracking [14,15,25,26].

The following subsections describe techniques specifically designed for leveraging in situ
processing to enable exploration. An algorithm for reducing data while allowing users to modify
the characteristics of a volume rendering is described in Section 6.1. An approach where data
is compared to a reference simulation and only the most different regions are stored for post-
processing is described in Section 6.2.

6.1 In Situ Visualization by Proxy

Typically, in situ visualization is used to generate an animation that captures features at high
temporal resolution. This results in static images rendered based on a fixed set of rendering and
visualization parameters and exploration is not possible. This section describes visualization by
proxy, introduced by Tikhonova et al. in 2010 [31], an approach that enables exploration without
requiring the full raw data and a supercomputer. The core idea is that, instead of generating
fully rendered results, proxy images are computed that essentially encode isosurface layers by
taking into account accumulated attenuation in a view dependent fashion. The resulting proxy
images (also called ray attention functions, or RAF, in [31]) enable exploration in the transfer
function space. The storage requirement for proxy images corresponds to the number of layers
chosen by the user. Ten to fifteen layers were found to be generally sufficient to capture enough
details in the data. As a result, the proxy images are typically 10–15 times larger than a single
regular image; however, the proxy images are substantially smaller than the size of a video that
can offer the same level of exploration.
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Tikhonova et al. extended their visualization by proxy technique into a parallel computing
environment to support in situ visualization [32]. They showed that computing proxy images
resembles volume rendering, and can be performed directly on the distributed data out of
the simulation without replication. The calculation is as scalable as parallel volume rendering.
Table 3 displays some timing results. All simulation data was stored as double-precision floating
point values. The proxy images are saved in 32-bit precision. The timing for simulation, I/O,
volume rendering, and RAF computing was measured for one timestep. I/O time is how long
it took for the simulation to write data to a disk. We can see that volume rendering and RAF
computing time accounts only for a small fraction of the total time. The authors noted that,
although the fraction for calculating the proxy images is small, real-world scenarios would have
the fraction be smaller still, since users would not visualize every timestep in practice.

6.2 In Situ Data Triage

Another strategy for using in situ techniques to reduce data for subsequent exploration is to
conduct a data triage such that the data is stored in a way to effectively supports particular
analysis and visualization tasks following the simulation. The basic approach is to reduce and
organize the data according to scientists’ prior knowledge about certain properties of the simu-
lation and features of interest. The resulting data should be compact and organized specifically
to facilitate the offline visualization operations.

A few designs to support co-processing in situ data triage have shown opportunities for
substantial data reduction and visualization of previously hidden features in the data. Wang
et al. [34] computed the importance of each unit block of a flow field, based on how much
information and the uniqueness of the information the block contains with respect to other
blocks. They showed that the resulting importance field can be used to characterize the flow field,
assist in feature extraction process, and guide compression and adaptive rendering. In another
study, Wang et al. [35] computed the importance value of each voxel in volume data output
from a turbulent combustion simulation according to its distance from the reference features
defined by the simulation scientist. First, by factoring the important values into compression,
they showed they can achieve impressive savings in storage space. Second, by mapping the
importance values to optical properties in the rendering step, the resulting visualization, as
shown in Figure 8, allows scientists to see the interaction of small turbulent eddies with the
preheated layer of a turbulent flame, a region previously obscured by the multiscale nature of
turbulent flow.

The effectiveness of this data triage approach relies on how much prior knowledge about the
modeled phenomena and features of interest is available for the design of distance functions for
importance measures. Distance may have a much broader meaning to consider than distance
in spatial domain, temporal domain, and any particular high-dimensional space defined by the
scientists, making the in situ data triage approach possibly applicable to many simulations.

7 Conclusion

In situ processing refers to a family of techniques that operate on simulation data as it is
produced, as opposed to the traditional post-processing model where the simulation stores its
data to disk and a visualization program subsequently reads it in. This technique is widely
predicted to play a larger and larger role as supercomputers march towards the exascale era,
as I/O is increasingly insufficient relative to compute power. Concurrent processing is the
in situ form where separate resources are allocated for visualization and analysis and data is
transferred over the network. Co-processing refers to the form where visualization algorithms
have direct access to the memory of the simulation code. It can be done with tailored code
that optimizes memory, network bandwidth and CPU time, or through an adaptor layer to
a general visualization tool, which brings a wealth of techniques and can work with many
simulation codes. Finally, hybrid techniques use elements of concurrent and co-processing to
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Figure 8: Visualization uncovering the interaction between the small turbulent eddies and the
preheated layer of flame. Image source: Wang et al. [35].

provide some of the advantages of concurrent processing while minimizing data movement. All
of these techniques have been shown to be successful in real-world settings. Finally, in situ
can prevent a potential loss of science; it creates an opportunity to process more data than is
possible with post-processing.

In situ processing is not a panacea, however, as it is incongruent with explorative use cases,
since they rarely have a priori knowledge. That said, recent work has looked at using in
situ processing to extract key information that can later be post-processed. Although these
techniques are typically domain-specific or algorithm-specific, they provide hope that exploration
can still occur even in configurations where in situ processing is required.
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[16] Sriram Lakshminarasimhan, Neil Shah, Stéphane Ethier, Scott Klasky, Rob Latham, Rob
Ross, and Nagiza F. Samatova. Compressing the Incompressible with ISABELA: In-situ
Reduction of Spatio-temporal Data. In Euro-Par (1), pages 366–379, 2011.

[17] J. Lofstead, Fang Zheng, S. Klasky, and K. Schwan. Adaptable, Metadata Rich IO Meth-
ods for Portable High Performance IO. In IEEE International Symposium on Parallel
Distributed Processing (IPDPS), pages 1–10, May 2009.

[18] Kwan-Liu Ma. Runtime Volume Visualization of Parallel CFD. In Proceedings of Inter-
national Parallel Computational Fluid Dynamics Conference (ParCFD), pages 307–314,
1995.

[19] Kwan-Liu Ma. In Situ Visualization at Extreme Scale: Challenges and Opportunities.
IEEE Computer Graphics and Applications, 29(6):14–19, November/December 2009.

[20] Manish Parashar. Addressing the Petascale Data Challenge Using In-Situ Analytics. In
Proceedings of the 2nd International Workshop on Petascale Data Analytics: Challenges
and Opportunities, PDAC ’11, pages 35–36, New York, NY, USA, 2011. ACM.

[21] S. G. Parker and C. R. Johnson. SCIRun: A Scientific Programming Environment for
Computational Steering. In Proceedings of ACM/IEEE Supercomputing Conference (SC),
1995.

[22] J. Rowlan, G. Lent, N. Gokhale, and S. Bradshaw. A Distributed, Parallel, Interactive
Volume Rendering Package. In Proceedings of IEEE Visualization Conference, pages 21–
30, October 1994.
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